vertex 2 5 directrix y 10 A y 22 20x 5 B y 22 8x 5 C
     vertex: (-2, 5), directrix: y = 10  A) (y + 2)^2 = -20(x - 5)  B) (y + 2)^2 = 8(x - 5)  C) (x + 2)^2 = -20(y - 5)  D) (x + 2)^2 = -20(y + 5)  Give the focus, directrix, and axis for the parabola.  (y - 6)^2 = -12(x + 2)  Write an equation for the ellipse.  center at origin; length of major axis 12; y-intercepts (0, plusminus 5)  A) x^2/36 + y^2/25 = 1  B) x^2/25 + y^2/36 = 1  C) x^2/5 + y^2/6 = 1  D) x^2/6 + y^2/5 = 1  foci at (1, 7), (1, 1); major axis length of 10 
  
  Solution
1)vertex ( -2 , 5) ; directrix y = 10
parabola is downwards opening as directrix is above vertex
So, (x -h)^2 = - 4p(y -k)
p = 5 units
( x +2)^2 = - 20(y - 5)
Option c

