vertex 2 5 directrix y 10 A y 22 20x 5 B y 22 8x 5 C

vertex: (-2, 5), directrix: y = 10 A) (y + 2)^2 = -20(x - 5) B) (y + 2)^2 = 8(x - 5) C) (x + 2)^2 = -20(y - 5) D) (x + 2)^2 = -20(y + 5) Give the focus, directrix, and axis for the parabola. (y - 6)^2 = -12(x + 2) Write an equation for the ellipse. center at origin; length of major axis 12; y-intercepts (0, plusminus 5) A) x^2/36 + y^2/25 = 1 B) x^2/25 + y^2/36 = 1 C) x^2/5 + y^2/6 = 1 D) x^2/6 + y^2/5 = 1 foci at (1, 7), (1, 1); major axis length of 10

Solution

1)vertex ( -2 , 5) ; directrix y = 10

parabola is downwards opening as directrix is above vertex

So, (x -h)^2 = - 4p(y -k)

p = 5 units

( x +2)^2 = - 20(y - 5)

Option c

 vertex: (-2, 5), directrix: y = 10 A) (y + 2)^2 = -20(x - 5) B) (y + 2)^2 = 8(x - 5) C) (x + 2)^2 = -20(y - 5) D) (x + 2)^2 = -20(y + 5) Give the focus, direct

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site