b2 b av r2 bi The trapezoidal cross sectional area of the cu
Solution
close all
clear all
clc
% Given parameters:
bavg = 3; % Average width of the trap. c/s
h = 4; % height of the trap. c/s
M = 1500*12; % Moment in lb.in not lb.ft
% +ve moment since its action straightens the bar
r1 = 8; % radius of the inner edge from the center of curvature
b1_var = 0:0.1:6; % Side b1 varying from 0 to 6 inches
%%% For loop calculating stresses for varying b1 from 0 to 6 inches:
for i = 1:size(b1_var,2)
% Other Geometric parameters:
b1 = b1_var(i); % Assigning b1 values from 0 to 6 inches
b2 = 2*bavg-b1; % calculatig b2 from b1 and bavg
r2 = r1+h; % radius of the inner edge from the center of curvature
A = bavg*h; % Ares of c/s of the trapezium
%%% Calculation of the neutral axis (r):
r = A/(b2-b1+(((b1*r2-b2*r1)/h)*log(r2/r1))); % Neutral axis distance from the center of curvature
%%% Calculation of the centroidal axis (rc):
rc = r1+ (h/3)*((b1+2*b2)/(b1+b2)); % Centroidal axis distance from the center of curvature
%%% Maximum tensile and bending compressive stresses:
% Distance of the Neutral axis to the inner and outer fibers(Ci & Co):
% Sign convention -> +ve towards the Center of curvature
Ci = r-r1;
Co = r-r2;
% Distance between the Centroidal axis and the Neutral axis (e):
e = rc-r;
% Maximum tensile stress on the innermost fiber (Sigmai):
Sigmai(i) = M*Ci/(A*e*r1);
% Maximum Compressive Stress on the outermost fiber(Sigmao):
Sigmao(i) = M*Co/(A*e*r2);
end
%%% Plots:
% Max. bending tensile stress vs width b1 of the c/s
figure,plot(0:0.1:6,Sigmai);
xlabel(\'b1 (in.)\')
ylabel(\'Max. bending tensile stress (lb/in^2)\')
title(\'Max. bending tensile stress vs width b1 of the c/s\')
% Max. bending compressive stress vs width b1 of the c/s
figure,plot(0:0.1:6,Sigmao);
xlabel(\'b1 (in.)\')
ylabel(\'Max. bending compressive stress (lb/in^2)\')
title(\'Max. bending compressive stress vs width b1 of the c/s\')
