Consider the following n times n square matrix Show that aj1
     Consider the following n times n square matrix. Show that a_j1 C_i1 + a_j2 C_i2 +...+ a_jn C_in = 0, where a_jk denotes the k^th element in the j^th row, C_il denotes the cofactor of the l^th element in the j^th row2, and j notequalto i.  A=[a_11  a_1n  a_n1  a_nn] 
  
  Solution
Consider the alien expansion which uses the entries of j-th row
 aj1, ..., ajn and cofactors of i-th row Ci1, ..., Cin
 aj1 · Ci1 + aj2 · Ci2 + ... + ain · Cin.
 This is Laplas expansion of the matrix
 .
 A\' = ( a11 ...............a1n
 ............................
 aj1 ................ajn
        ...........................
        ..........................
        aj1....................ajn
        ............................
        aj1......................ajn
        .............................
        .............................
        an1.......................ann
         )
            with two equal rows, thus det(A\') = 0.

