Kahn Problem 1 Solve for x 2 points each a 81x3322 b log2x3l
Solution
8^(4x - 3) = 32^(2x +1)
Clearly 2^3 = 8 and 2^5 = 32 comes into the fore...
(2^3)^(4x-3) = (2^5)^(2x + 1)
Now, using laws of exponents :
 2^(3(4x-3)) = 2^(5(2x+1))
2^(12x - 9) = 2^(10x + 5)
Equating exponents :
 12x - 9 = 10x + 5
 2x = 14
 x = 7
------------------------------------------------------------------
b)
 log 4 (2x + 3) - log 4 (3x + 1) = 1/2
Using law of logs :
 log 4 ((2x+3)/(3x+1)) = 1/2
Converting to exponential format :
 (2x+3)/(3x+1) = 4^(1/2)
(2x+3)/(3x+1) = 2
Crossmultiply :
 2x+3 = 2(3x + 1)
2x + 3 = 6x + 2
4x = 1
x = 1/4
---------------------------------------------------------------------
c)
 log(a^3 * sqrtb / c^5)
 can be written as :
3log(a) + 1/2log(b) - 5log(c) when expanded
Plug back :
 3(4) + 1/2(12) - 5(-8)
12 + 6 + 40
58
---------------------------------------------------------------------
d)
 A = 5000 dollars
 t = 4
 r = 8% or 0.08
So, we have
 A = Pe^(rt)
5000 = P * e^(0.08 * 4)
5000 = Pe^(0.32)
P = 5000/e^0.32
P = 3630.75 dollars


