A particle travels along the path y24x with a constant speed
A particle travels along the path y^2=4x with a constant speed of v = 5 m/s .
Determine the x and y components of the particle\'s velocity when the particle is at x = 6 m .
Determine the x and y components of the particle\'s acceleration when the particle is at x = 6 m
Solution
Let derivative w.r.t. time be denoted by : \'
y^2=4x
Taking derivative w.r.t. t we get:
2yy\'=4x\'
x\'=yy\'/2
Speed =5 so
sqrt(x\'^2+y\'^2)=5
x\'^2+y\'^2=25
y\'^2y^2/4+y\'^2=25
y\'^2(1+y^2/4)=25
y\'^2(1+x)=25
y\'^2=25/7
y\'=5/sqrt(7)
x\'=yy\'/2
y=sqrt(4x}=2\\sqrt{x}=2 sqrt{6}
x\'=(5/sqrt(7))(sqrt(6))=5sqrt(6/7)
x\'=5sqrt(6/7),y\'=5/sqrt(7)
x\'=yy\'/2 , x\'^2+y\'^2=25
So,
(yy\'/2)^2+y\'^2=25
y\'^2(y^2/4+1)=25
Differentiating w.r.t. t gives:
2y\'y\'\'(y^2/4+1)+y\'^2(yy\')/2=0
2y\'y\'\'(x+1)+y\'^2(yy\')/2=0
y\'=5/sqrt(7),x=6
2y\'\'(x+1)+y\'^2y/2=0
y\'\'=-(y\'^2y)/(4(x+1))
y\'\'=-(25/7* 2sqrt(6))/(4*7)=-25sqrt(6)/98
x\'=yy\'/2
Taking derivative gives:
x\'\'=yy\'\'/2+y\'^2/2
x\'\'=-25sqrt(6)*2sqrt(6)/98+25/14
x\'\'=-25*6*2/98+25/14
x\'\'=25(-6/49+1/14)
x\'\'=25(-12+7)/98
x\'\'=-125/98,y\'\'=-25sqrt(6)/98

