Find all the complex cube roots of w 64 cos 150 degree i s
     Find all the complex cube roots of w = 64 (cos 150 degree + i sin 150 degree). Write the roots in polar form with theta in degrees.  z_0 =  (cos  degree + i sin  degree) (Type answers in degrees. Simplify your answer.)  z_1 =  (cos  degree + i sin  degree)  (Type answers in degrees. Simplify your answer.)  z_2 =  (cos  degree + i sin  degree)  (Type answers in degrees. Simplify your answer.) 
  
  Solution
given w=64(cos150o+i sin150o)
w=z3
z3=64(cos150o+i sin150o)
z0=(64(cos150o+i sin150o))1/3,z1=(64(cos(360+150)o+i sin(360+150)o))1/3,z2=(64(cos(720+150)o+i sin(720+150)o))1/3
z0=641/3(cos150o+i sin150o)1/3,z1=641/3(cos(510)o+i sin(510)o))1/3,z2=641/3(cos(870)o+i sin(870)o)1/3
z0=4(cos(150/3)o+i sin(150/3)o),z1=4(cos(510/3)o+i sin(510/3)o)),z2=4(cos(870/3)o+i sin(870/3)o)
z0=4(cos(50)o+i sin(50)o),z1=4(cos(170)o+i sin(170)o)),z2=4(cos(290)o+i sin(290)o)

