If Fx fxfxfx where f1 5 f5 6 f 1 2 f 5 3 and f 6 4 fin
If
F(x) = f(xf(xf(x))),
where
f(1) = 5, f(5) = 6, f \'(1) = 2, f \'(5) = 3,
and
f \'(6) = 4,
find
F \'(1).
F(x) = f(xf(xf(x))),
where
f(1) = 5, f(5) = 6, f \'(1) = 2, f \'(5) = 3,
and
f \'(6) = 4,
find
F \'(1).
Solution
F\'(x)= f\'(xf(xf(x))) . [f(xf(x) + xf\'(xf(x)) [xf\'(x) + f(x)]] F1(1)=f1(f(f(1))).[f(f(1)+f1(f(1))[f1(1)+f(1)]] =4*[6+3*(2+5)] = 4*[27] = 108