Use the method of undetermined coefficients to solve the giv
Solution
Let, X=(u,v)^T
So
u\'=u+3v-4t^2
v\'=3u+v+t+3
First we solve homogeneous equations
u\'=u+3v
v\'=3u+v
Adding equations gives
(u+v)\'=4(u+v)
Integrating gives
u+v=A e^{4t}
Substracting equations gives
(u-v)\'=-2(u-v)
Integrating gives
u-v=B e^{-2t}
So,
u=A e^{4t} +B e^{-2t}
v=A e^{4t} - Be^{-2t}
Let guesses for particular solution be:
up = p1 t^2+q1 t+ r1
vp =p2 t^2+q2 t+ r2
Substituting gives
2p1 t+q1=(p1+3p2)t^2+(q1+3q2)t+(r1+3r2)-4t^2
p1+3p2=4
q1+3q2=2p1
r1+3r2=q1
2p2 t+q2=(p2+3p1)t^2+(q2+3q1)t+(r2+3r1)+4t+3
p2+3p1=0
q2+3q1+4=2p2
r2+3r1+3=q2
Solving gives:
p2=-1/2,p1=1/6
q1+3q2=2p1 , q2+3q1+4=2p2
q1+3q2=1/3
q2+3q1=-5
q2=3/4,q1=-23/12
r1+3r2=q1, r2+3r1+3=q2
r1+3r2=-23/12, r2+3r1+3=3/4
r1=-29/48, r2=-7/16
so we have the particular solution and this solves the differential equation

