If an greaterthanorequalto 0 and bn greaterthanorequalto 0 p
If a_n greaterthanorequalto 0 and b_n greaterthanorequalto 0, prove that lim sup a_n b_n lessthanorequalto (lim sup a_n) (lim sup b_n).
Solution
Assume that an 0 and bn 0
Let
xn := sup{an, an+1, . . .} , yn := sup{bn, bn+1, . . .}, and zn = sup{anbn, an+1bn+1, . . .}
Since akbk xnyn for all k n,
We have zn xn yn and consequently ( bounded)
lim sup(anbn) = limzn lim(xnyn) =( limxn · lim yn) ( lim sup an ) ( lim sup bn.)
Hence,
lim sup(anbn) ( lim sup an ) ( lim sup bn.)
