If an greaterthanorequalto 0 and bn greaterthanorequalto 0 p

If a_n greaterthanorequalto 0 and b_n greaterthanorequalto 0, prove that lim sup a_n b_n lessthanorequalto (lim sup a_n) (lim sup b_n).

Solution

Assume that an 0 and bn 0
Let
xn := sup{an, an+1, . . .} , yn := sup{bn, bn+1, . . .}, and zn = sup{anbn, an+1bn+1, . . .}

Since akbk xnyn for all k n,

We have zn xn yn and consequently ( bounded)

lim sup(anbn) = limzn lim(xnyn) =( limxn · lim yn) ( lim sup an ) ( lim sup bn.)

Hence,

lim sup(anbn) ( lim sup an ) ( lim sup bn.)

 If a_n greaterthanorequalto 0 and b_n greaterthanorequalto 0, prove that lim sup a_n b_n lessthanorequalto (lim sup a_n) (lim sup b_n).SolutionAssume that an 0

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site