Solve log3x 12 log3x 4 2Solutionlog3x12 log3x4 2 use the
     Solve: log_3(x + 12) - log_3(x + 4) = 2 
  
  Solution
log3(x+12) +log3(x+4) =2
use the property : logx +logy = log(x*y)
So, log3(x+12)(x+4) = 2
(x+12)(x+4) = 9
x^2 +16x +48 =9
x^2 +16x + 39 =0
factorise : x^2 +13x +3x +39 =0
x(x+13)+ 3(x+13)=0
(x+3)(x+13) =0
x= -3 , x=-13

