If cos z and sin r 13 0 find sin2x O 600169 O 1213 O120169
If cos z- and sin r > 13 0 find sin(2x) O -600/169 O 12/13 O-120/169 O 119/169
Solution
Given that cosx=-12/13 sinx>0
Calculate the value of sin2x
sinx= sqrt(13^2-12^2)/13
=5/13
Now, we know that sin2x= 2sinxcosx
subsituting the above values
=2*(5/13)*(-12/13)
=-120/169=answer
