Show that S 1 1 2 3 2 4 0 1 0is a basis for R3SolutionDenot
     Show that S = {[1  1  -2], [3  2  -4], [0  1  0]}is a basis for R^3![Show that S = {[1 1 -2], [3 2 -4], [0 1 0]}is a basis for R^3SolutionDenote transpose by: \' ie A^T=A\' So, S={v1,v2,v3} v1=(1,1,-2)\',v2=(3,2,-4)\',v3=(0,1,0)  Show that S = {[1 1 -2], [3 2 -4], [0 1 0]}is a basis for R^3SolutionDenote transpose by: \' ie A^T=A\' So, S={v1,v2,v3} v1=(1,1,-2)\',v2=(3,2,-4)\',v3=(0,1,0)](/WebImages/35/show-that-s-1-1-2-3-2-4-0-1-0is-a-basis-for-r3solutiondenot-1102842-1761583088-0.webp) 
  
  Solution
Denote transpose by: \'
ie A^T=A\'
So, S={v1,v2,v3}
v1=(1,1,-2)\',v2=(3,2,-4)\',v3=(0,1,0)\'
e1=v2-2v1=(1,0,0)\'
e1+v3-v1=(0,0,2)\'
Hence, vectors in S spans all the standard basis vectors of R3 and hence S is a basis of R3
![Show that S = {[1 1 -2], [3 2 -4], [0 1 0]}is a basis for R^3SolutionDenote transpose by: \' ie A^T=A\' So, S={v1,v2,v3} v1=(1,1,-2)\',v2=(3,2,-4)\',v3=(0,1,0)  Show that S = {[1 1 -2], [3 2 -4], [0 1 0]}is a basis for R^3SolutionDenote transpose by: \' ie A^T=A\' So, S={v1,v2,v3} v1=(1,1,-2)\',v2=(3,2,-4)\',v3=(0,1,0)](/WebImages/35/show-that-s-1-1-2-3-2-4-0-1-0is-a-basis-for-r3solutiondenot-1102842-1761583088-0.webp)
