y4y0 y0y01 y00y0SolutionLet yz So given differential equatio
y^4-y\"=0 y(0)=y\'(0)=1 y\"\'(0)=0=y\"\"(0)
Solution
Let, y\'\'=z
So given differential equation becomes:
z\'\'=z
General solution to this is:
z=ae^{x}+be^{-x}
y\'\'=ae^{x}+be^{-x}
Integrating gives:
y\'=ae^{x}-be^{-x}+c
y=ae^{x}+be^{-x}+cx+d
y\'\'\'=ae^{x}-be^{-x}
y\'\'\'(0)=a-b=0
y\'\'(0)=a+b=0
Hence, a=b=0
y(0)=1
Hence,
c+d=1
y\'(0)=1
Hence, c=1
Hence, d=0
y(x)=x

