a Find a 95 twosided confidence interval on the true proport
(a) Find a 95% two-sided confidence interval on the true proportion of helmets of this type that would show damage from this test. Round the answers to 3 decimal places.
(b) Using the point estimate of p obtained from the preliminary sample of 60 helmets, how many helmets must be tested to be 95% confident that the error in estimating the true value of p is less than 0.02?
c) How large must the sample be if we wish to be at least 95% confident that the error in estimating p is less than 0.02, regardless of the true value of p?
Solution
a)
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.266666667          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.057089923          
               
 Now, for the critical z,              
 alpha/2 =   0.025          
 Thus, z(alpha/2) =    1.959963985          
 Thus,              
 Margin of error = z(alpha/2)*sp =    0.111894192          
 lower bound = p^ - z(alpha/2) * sp =   0.154772475          
 upper bound = p^ + z(alpha/2) * sp =    0.378560859          
               
 Thus, the confidence interval is              
               
 (   0.154772475   ,   0.378560859   ) [ANSWER]
****************
b)
Note that      
       
 n = z(alpha/2)^2 p (1 - p) / E^2      
       
 where      
       
 alpha/2 =    0.025  
        
       
 Using a table/technology,      
       
 z(alpha/2) =    1.959963985  
       
 Also,      
       
 E =    0.02  
 p =    0.266666667  
       
 Thus,      
       
 n =    1878.046535  
       
 Rounding up,      
       
 n =    1879   [ANSWER]
******************
c)
Note that      
       
 n = z(alpha/2)^2 p (1 - p) / E^2      
       
 where      
       
 alpha/2 =    0.025  
 As there is no previous estimate for p, we set p = 0.5.      
       
 Using a table/technology,      
       
 z(alpha/2) =    1.959963985  
       
 Also,      
       
 E =    0.02  
 p =    0.5  
       
 Thus,      
       
 n =    2400.911763  
       
 Rounding up,      
       
 n =    2401   [ANSWER]


