a Find a 95 twosided confidence interval on the true proport

(a) Find a 95% two-sided confidence interval on the true proportion of helmets of this type that would show damage from this test. Round the answers to 3 decimal places.

(b) Using the point estimate of p obtained from the preliminary sample of 60 helmets, how many helmets must be tested to be 95% confident that the error in estimating the true value of p is less than 0.02?

c) How large must the sample be if we wish to be at least 95% confident that the error in estimating p is less than 0.02, regardless of the true value of p?

Solution

a)

Note that              
              
p^ = point estimate of the population proportion = x / n =    0.266666667          
              
Also, we get the standard error of p, sp:              
              
sp = sqrt[p^ (1 - p^) / n] =    0.057089923          
              
Now, for the critical z,              
alpha/2 =   0.025          
Thus, z(alpha/2) =    1.959963985          
Thus,              
Margin of error = z(alpha/2)*sp =    0.111894192          
lower bound = p^ - z(alpha/2) * sp =   0.154772475          
upper bound = p^ + z(alpha/2) * sp =    0.378560859          
              
Thus, the confidence interval is              
              
(   0.154772475   ,   0.378560859   ) [ANSWER]

****************

b)

Note that      
      
n = z(alpha/2)^2 p (1 - p) / E^2      
      
where      
      
alpha/2 =    0.025  
       
      
Using a table/technology,      
      
z(alpha/2) =    1.959963985  
      
Also,      
      
E =    0.02  
p =    0.266666667  
      
Thus,      
      
n =    1878.046535  
      
Rounding up,      
      
n =    1879   [ANSWER]

******************

c)

Note that      
      
n = z(alpha/2)^2 p (1 - p) / E^2      
      
where      
      
alpha/2 =    0.025  
As there is no previous estimate for p, we set p = 0.5.      
      
Using a table/technology,      
      
z(alpha/2) =    1.959963985  
      
Also,      
      
E =    0.02  
p =    0.5  
      
Thus,      
      
n =    2400.911763  
      
Rounding up,      
      
n =    2401   [ANSWER]

(a) Find a 95% two-sided confidence interval on the true proportion of helmets of this type that would show damage from this test. Round the answers to 3 decima
(a) Find a 95% two-sided confidence interval on the true proportion of helmets of this type that would show damage from this test. Round the answers to 3 decima

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site