Use the approximation that vavg pfm for each time step A sp
Solution
equilibrium positon for spring,
ky - m g = 0
13 y = (78 x 10^-3 kg)(9.8)
y = 0.0588 m Or 5.8 cm
so equlibrium position, y0 = 25 - 5.88 = 19.12 cm
hence amplitude , A = 29.7 - 19.12 = 10.58 cm
w = sqrt(k/m) = sqrt(13/0.078) = 12.91 rad/s
y = A cos(12.91t)
for y, that is distance from ground
y\' = A cos12.91t + B
and t = 0 , y= 29.7 cm
29.7 = 10.58 + B
B = 19.12 cm
y = 12.58 cos(12.91t) + 19.12
at t= 0.2s
y = 12.58 cos(12.91x 0.2 rad) + 19.12
y = 8.46 cm
positionn vector, r = <0, 0.0846, 0 > m (from ground) .............Ans
v = dy/dt = d(12.58 cos(12.91t)) /dt = - 162.4 sin(12.91t) cm/s
v = - 1.624 sin(12.91t) m/s
at t = 0.2s
v = 1.624 sin(!2.91 x 0.2) = - 0.862 m/s
momentum = m v = (78 x 10^-3) (-0.862) = - 0.0672 kg m/s
on vector form, <0, - 0.0672, 0 > kg m/s

