Solve this ln problem using best method lnx 8 lnx 1 2 ln
Solve this ln problem using best method: ln(x + 8) + ln(x – 1) = 2 ln x
Solution
Given ln(x + 8) + ln(x – 1) = 2 ln x
ln is the natural logorithm and it is logarithm with a base \'e\'.
Solution:
ln(x + 8) + ln(x – 1) = 2 ln x
ln(x + 8) + ln(x – 1) - 2 ln x = 0
ln((x + 8)(x – 1)) - 2 ln x = 0 (because ln(a.b) = ln(a) + ln(b) )
ln((x + 8)(x – 1)) - ln x2 = 0 (ln(xa) = a.ln(x))
ln((x + 8)(x – 1)/x2) = 0 ( ln(a/b) = ln(a) - ln(b) )
loge((x + 8)(x – 1)/x2) = 0 (ln(x) = logex)
(x + 8)(x – 1)/x2 = e0 (if logex = y then x=ey)
(x + 8)(x – 1)/x2 = 1 (a0 = 1 a- any number)
(x + 8)(x – 1) = x2
x2 +7x-8 = x2
7x-8 = 0
7x = 8
X = 8/7
Therefore the solution for the given equation is x=8/7
