Thirty percent of all customers who enter a store will make
Thirty percent of all customers who enter a store will make a purchase. Suppose that six customers enter the store and that these customers make independent purchase decisions.
Use the binomial formula to calculate the probability that exactly five customers make a purchase. (Round your answer to 4 decimal places.)
Use the binomial formula to calculate the probability that at least three customers make a purchase. (Round your answer to 4 decimal places.)
Use the binomial formula to calculate the probability that two or fewer customers make a purchase. (Round your answer to 4 decimal places.)
Use the binomial formula to calculate the probability that at least one customer makes a purchase. (Round your answer to 4 decimal places.)
| (1) | Use the binomial formula to calculate the probability that exactly five customers make a purchase. (Round your answer to 4 decimal places.) | 
Solution
1.
Note that the probability of x successes out of n trials is          
           
 P(n, x) = nCx p^x (1 - p)^(n - x)          
           
 where          
           
 n = number of trials =    6      
 p = the probability of a success =    0.3      
 x = the number of successes =    5      
           
 Thus, the probability is          
           
 P (    5   ) =    0.010206 [ANSWER]
*****************
Consider:
2.
          
 Thus, the probability of at least   3   successes is  
           
 P(at least   3   ) = P(3) + P(4) + P(5) + P(6) = 0.25569 [ANSWER]
*******************
3.
          
 Then the cumulative probability is          
           
 P(at most   2   ) = P(0) + P(1) + P(2) = 0.74431 [ANSWER]
********************
4.
Thus, P(at least one) = 1 - P(0) = 0.882351 [ANSWER]
| x | P(x) | 
| 0 | 0.117649 | 
| 1 | 0.302526 | 
| 2 | 0.324135 | 
| 3 | 0.18522 | 
| 4 | 0.059535 | 
| 5 | 0.010206 | 
| 6 | 0.000729 | 


