fxx33x27x3 on the interval 03 what value of c satisfies the

f(x)=x^3-3x^2+7x-3 on the interval [0,3]

what value of c satisfies the conclusion of the theorem

Solution

f(x) = x^3 - 3x^2 + 7x - 3

f\'(x) = 3x^2 - 6x + 7

f\'(c) = (f(3) - f(0))/(3 - 0)

3c^2 - 6c + 7 = 7

3c^2 - 6c = 0

3c(c - 2) = 0

c = 0, 2

0 < c < 3    -->    c = 2

Remember to rate the best anwer first.

f(x)=x^3-3x^2+7x-3 on the interval [0,3] what value of c satisfies the conclusion of the theoremSolutionf(x) = x^3 - 3x^2 + 7x - 3 f\'(x) = 3x^2 - 6x + 7 f\'(c)

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site