Find the particular solution to y5y6y17te2tSolutionFirst let
Find the particular solution to y\'\'+5y\'+6y=-17te^(2t)
Solution
First let\'s check the complimentary solution ie solution to homogeneous equation
y\'\'+5y\'+6y=0
Assume:y=e^{kx},substituting gives:
k^2+5k+6=0
k=-2,-3
Hence solutions of homogeneous ODE are: e^{-2t} and e^{-3t}
Since the inhomogeneous part is not solution to the ODE we can assume the form of particular solution based on the inhomogeneous part:
yp=e^{2t}(A+Bt)
yp\'=e^{2t}B+2e^{2t}(A+Bt)=e^{2t}(2A+B+2Bt)
yp\'\'=e^{2t}2B+2e^{2t}(2A+B+2Bt)=e^{2t}(4A+4B+4Bt)
Substituting gives:
4A+4B+4Bt+5(2A+B+2Bt)+6(A+Bt)=-17t
Comparing constant terms and coefficients of t gives:
4A+4B+10A+5B+6A=0 ,Hence, 20A+9B=0
4Bt+10Bt+6Bt=-17t
So, B=-17/20
A=153/400
So particular solution is:
e^{2t}(153/400-17t/20)
