If n 200 and X 60 construct a 95 confidence interval estim
If n - 200 and X = 60, construct a 95% confidence interval estimate of the population proportion.
Solution
Note that
p^ = point estimate of the population proportion = x / n = 0.3
Also, we get the standard error of p, sp:
sp = sqrt[p^ (1 - p^) / n] = 0.032403703
Now, for the critical z,
alpha/2 = 0.025
Thus, z(alpha/2) = 1.959963985
Thus,
Margin of error = z(alpha/2)*sp = 0.063510092
lower bound = p^ - z(alpha/2) * sp = 0.236489908
upper bound = p^ + z(alpha/2) * sp = 0.363510092
Thus, the confidence interval is
( 0.2365 , 0.3635 ) [ANSWER]
