If n 200 and X 60 construct a 95 confidence interval estim

If n - 200 and X = 60, construct a 95% confidence interval estimate of the population proportion.

Solution

Note that              
              
p^ = point estimate of the population proportion = x / n =    0.3          
              
Also, we get the standard error of p, sp:              
              
sp = sqrt[p^ (1 - p^) / n] =    0.032403703          
              
Now, for the critical z,              
alpha/2 =   0.025          
Thus, z(alpha/2) =    1.959963985          
Thus,              
Margin of error = z(alpha/2)*sp =    0.063510092          
lower bound = p^ - z(alpha/2) * sp =   0.236489908          
upper bound = p^ + z(alpha/2) * sp =    0.363510092          
              
Thus, the confidence interval is              
              
(   0.2365   ,   0.3635   ) [ANSWER]

 If n - 200 and X = 60, construct a 95% confidence interval estimate of the population proportion. SolutionNote that p^ = point estimate of the population propo

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site