Complete the identity cos4 x sin4 x A 1 2cos2x B 1 2sin2x
Complete the identity. cos^4 x - sin^4 x = ? A. 1 -2cos^2x B. 1 -2sin^2x C. 1 + 2sin^2x D. 1 + 2cos^2X Complete the identity.
Solution
cos^4 x - sin^4 x
we can write it as
(cos^2x)^2 - (sin^2x )^2
applying difference of squares formula
a^2 - b^2 = (a-b)(a+b)
(cos^2x)^2 - (sin^2x )^2 = (cos^2x + sin^2x )( cos^2 x - sin^2x)
cos^2 x + sin^2 x = 1
cos^2x - sin^2 x = (1- sin^2 x ) - sin^2 x = 1 - 2 sin^2 x
plugging the values
(cos^2x + sin^2x )( cos^2 x - sin^2x) = 1(1-2sin^2x )
= 1- 2 sin^2x
option b is correct
