The height in centimeters of the tip of the minute hand on a

The height in centimeters of the tip of the minute hand on a vertical clock is a function, f(t), of the time, t, in minutes. The minute hand is 18 cm long, and the middle of the clock face is 226 cm above the ground. (a) The midline of the graph of f(t) is y = (b) The amplitude of the graph of f(t) is

Solution

Solution

a)          To    find   the   midline   of    the graph   of   f(t)   is

            At    0    minutes    is     226 + 18 =   244

        At    15   minutes   is     226 + 0 = 226

            At     30 minutes    is    226 - 18 =   208

          At     45 minutes   is     226 + 0 =   226

            At     60 minutes    is    226 + 18 = 244

           Therefore , the midline   will    be   Horizontal    line    at     y = 226 units

           and   the   Amplitude   will   be f(t) = 244 - 208 = 36

              

 The height in centimeters of the tip of the minute hand on a vertical clock is a function, f(t), of the time, t, in minutes. The minute hand is 18 cm long, and

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site