3234363840 Simplify Assume that all radicands are nonnegat s

32,34,36,38,40
Simplify. Assume that all radicands are nonnegat sin2 x cos x /cos x 32. Vcos x sin x. sin x 33. V cos sin\' -V/cos\' 34. Vtan x-2 tan x sin x sin x 35. (1 Vsin y) (Vsin y + 1) 36. Vcos ( V 2 cos + V sin cos

Solution

32) sqrt(cos2x sinx)*sqrt(sinx)=cosx*sqrt(sinx)*sqrt(sinx)=cosx*sinx since sqrt(cos2x)=cosxsqrt(sin2x)=sinx

sqrt(cos2x sinx)*sqrt(sinx)=cosx*sinx

34) sqrt(tan2x-2tanx sinx+sin2x)

using the formula a^2-2ab+b^2=(a-b)^2 where a=tanx,b=sinx

sqrt(tan2x-2tanx sinx+sin2x)=sqrt((tanx-sinx)2)=tanx-sinx

sqrt(tan2x-2tanx sinx+sin2x)=tanx-sinx

36) sqrt(cos(theta))*[sqrt(2cos(theta))+sqrt(cos(theta) sin(theta))]

=[sqrt(2cos2(theta))+sqrt(cos2(theta) sin(theta))]

=sqrt(2)*cos(theta)+cos(theta)*sqrt(sin(theta))

=cos(theta)*[sqrt(2)+sqrt(sin(theta))]

sqrt(cos(theta))*[sqrt(2cos(theta))+sqrt(cos(theta) sin(theta))]=cos(theta)*[sqrt(2)+sqrt(sin(theta))]

38) sqrt(cosx/tanx)

Rationalizing the denominator

sqrt(cosx/tanx)*sqrt(tanx/tanx)

=sqrt((cosx tanx)/tan2x)

=sqrt(cosx tanx)/tanx

substitute tanx=sinx/cosx

=sqrt(cosx sinx/cosx)/tanx

=sqrt(sinx)/tanx

sqrt(cosx/tanx) =sqrt(sinx)/tanx

40) sqrt((1-cos)/(1+cos))

Rationalizing the denominator

sqrt((1-cos)/(1+cos))=sqrt((1-cos)/(1+cos))*sqrt(1-cos)/sqrt(1-cos)

=sqrt((1-cos)2/(1-cos2))

use 1-cos2=sin2

=sqrt((1-cos)2/(sin2))

=(1-cos)/sin

sqrt((1-cos)/(1+cos))=(1-cos)/sin

32,34,36,38,40 Simplify. Assume that all radicands are nonnegat sin2 x cos x /cos x 32. Vcos x sin x. sin x 33. V cos sin\' -V/cos\' 34. Vtan x-2 tan x sin x si

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site