Find the eigenvalues and corresponding eigenvectors of 2 2 3
Find the eigenvalues and corresponding eigenvectors of [2 -2 -3 1].
Solution
|A - bI| = (2-b)(1-b) - (-3)(-2) = b^2 -3b +2 -6 = b^2-3b-4 = 0
or (b-1)(b+4) = 0
b=1 or b=-4
The 2 eigen values are b=1, b=-4
Inputting , b=1.
[1 -3
-2 0] [ v1 v2 ] = 0
So, v1 = 3v2
So, the first eigen vector is [1
-3]
The second eigen vector is by inputting b=-4,
[-2 -3
-2 -3] or
The second eigen vector is :
[ -2
-3]
![Find the eigenvalues and corresponding eigenvectors of [2 -2 -3 1].Solution|A - bI| = (2-b)(1-b) - (-3)(-2) = b^2 -3b +2 -6 = b^2-3b-4 = 0 or (b-1)(b+4) = 0 b= Find the eigenvalues and corresponding eigenvectors of [2 -2 -3 1].Solution|A - bI| = (2-b)(1-b) - (-3)(-2) = b^2 -3b +2 -6 = b^2-3b-4 = 0 or (b-1)(b+4) = 0 b=](/WebImages/36/find-the-eigenvalues-and-corresponding-eigenvectors-of-2-2-3-1106135-1761585483-0.webp)