2csc2x1cot2 2csc2x1cot2 2csc2x1cot2SolutionAssuming you are

2-csc^2x=1-cot^2
2-csc^2x=1-cot^2
2-csc^2x=1-cot^2

Solution

Assuming you are allowed to use (sin^2)x + (cos^2)x = 1, divide both sides by (sin^2x)
sin^2x/sin^2x + cos^2x/sin^2x = 1/sin^2x
Since cscx = 1/sinx and cotx = 1/tanx = 1(sinx/cosx)=cosx/sinx the above equation simplifies to
1 + cot^2x = csc^2x

2-(1 + cot^2x)= 2-csc^2x

1- cot^2x=  2-csc^2x---->L.H.S= R.H.S

 2-csc^2x=1-cot^2 2-csc^2x=1-cot^2 2-csc^2x=1-cot^2SolutionAssuming you are allowed to use (sin^2)x + (cos^2)x = 1, divide both sides by (sin^2x) sin^2x/sin^2x

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site