For an undirected graph a subset S of the vertices is called
Solution
Try this program...........
#include <iostream>
#include <fstream>
#include <string>
#include <vector>
using namespace std;
bool removable(vector<int> neighbor, vector<int> cover);
int max_removable(vector<vector<int> > neighbors, vector<int> cover);
vector<int> procedure_1(vector<vector<int> > neighbors, vector<int> cover);
vector<int> procedure_2(vector<vector<int> > neighbors, vector<int> cover, int k);
int cover_size(vector<int> cover);
ifstream infile (\"graph.txt\");
ofstream outfile (\"sets.txt\");
int main()
{
//Read Graph
cout<<\"Largest Independent Set Algorithm.\"<<endl;
int n, i, j, k, K, p, q, r, s, min, edge, counter=0;
infile>>n;
vector< vector<int> > graph;
for(i=0; i<n; i++)
{
vector<int> row;
for(j=0; j<n; j++)
{
infile>>edge;
row.push_back(edge);
}
graph.push_back(row);
}
//Find Neighbors
vector<vector<int> > neighbors;
for(i=0; i<graph.size(); i++)
{
vector<int> neighbor;
for(j=0; j<graph[i].size(); j++)
if(graph[i][j]==1) neighbor.push_back(j);
neighbors.push_back(neighbor);
}
cout<<\"Graph has n = \"<<n<<\" vertices.\"<<endl;
//Read maximum size of Set wanted
cout<<\"Find an Largest Independent Set of size at least k = \";
cin>>K; k=n-K;
//Find Sets
bool found=false;
cout<<\"Finding Largest Independent Sets...\"<<endl;
min=n+1;
vector<vector<int> > covers;
vector<int> allcover;
for(i=0; i<graph.size(); i++)
allcover.push_back(1);
for(i=0; i<allcover.size(); i++)
{
if(found) break;
counter++; cout<<counter<<\". \"; outfile<<counter<<\". \";
vector<int> cover=allcover;
cover[i]=0;
cover=procedure_1(neighbors,cover);
s=cover_size(cover);
if(s<min) min=s;
if(s<=k)
{
outfile<<\"Largest Independent Set (\"<<n-s<<\"): \";
for(j=0; j<cover.size(); j++) if(cover[j]==0) outfile<<j+1<<\" \";
outfile<<endl;
cout<<\"Largest Independent Set Size: \"<<n-s<<endl;
covers.push_back(cover);
found=true;
break;
}
for(j=0; j<n-k; j++)
cover=procedure_2(neighbors,cover,j);
s=cover_size(cover);
if(s<min) min=s;
outfile<<\"Large Independent Set (\"<<n-s<<\"): \";
for(j=0; j<cover.size(); j++) if(cover[j]==0) outfile<<j+1<<\" \";
outfile<<endl;
cout<<\"Large Independent Set Size: \"<<n-s<<endl;
covers.push_back(cover);
if(s<=k){ found=true; break; }
}
//Pairwise Intersections
for(p=0; p<covers.size(); p++)
{
if(found) break;
for(q=p+1; q<covers.size(); q++)
{
if(found) break;
counter++; cout<<counter<<\". \"; outfile<<counter<<\". \";
vector<int> cover=allcover;
for(r=0; r<cover.size(); r++)
if(covers[p][r]==0 && covers[q][r]==0) cover[r]=0;
cover=procedure_1(neighbors,cover);
s=cover_size(cover);
if(s<min) min=s;
if(s<=k)
{
outfile<<\"LArge Independent Set (\"<<n-s<<\"): \";
for(j=0; j<cover.size(); j++) if(cover[j]==0) outfile<<j+1<<\" \";
outfile<<endl;
cout<<\"Largest Independent Set Size: \"<<n-s<<endl;
found=true;
break;
}
for(j=0; j<k; j++)
cover=procedure_2(neighbors,cover,j);
s=cover_size(cover);
if(s<min) min=s;
outfile<<\"LArgest Independent Set (\"<<n-s<<\"): \";
for(j=0; j<cover.size(); j++) if(cover[j]==0) outfile<<j+1<<\" \";
outfile<<endl;
cout<<\" Largest Independent Set Size: \"<<n-s<<endl;
if(s<=k){ found=true; break; }
}
}
if(found) cout<<\"Found Large Independent Set of size at least \"<<K<<\".\"<<endl;
else cout<<\"Could not find Large Independent Set of size at least \"<<K<<\".\"<<endl
<<\"Maximum Large Independent Set size found is \"<<n-min<<\".\"<<endl;
cout<<\"See sets.txt for results.\"<<endl;
system(\"PAUSE\");
return 0;
}
bool removable(vector<int> neighbor, vector<int> cover)
{
bool check=true;
for(int i=0; i<neighbor.size(); i++)
if(cover[neighbor[i]]==0)
{
check=false;
break;
}
return check;
}
int max_removable(vector<vector<int> > neighbors, vector<int> cover)
{
int r=-1, max=-1;
for(int i=0; i<cover.size(); i++)
{
if(cover[i]==1 && removable(neighbors[i],cover)==true)
{
vector<int> temp_cover=cover;
temp_cover[i]=0;
int sum=0;
for(int j=0; j<temp_cover.size(); j++)
if(temp_cover[j]==1 && removable(neighbors[j], temp_cover)==true)
sum++;
if(sum>max)
{
max=sum;
r=i;
}
}
}
return r;
}
vector<int> procedure_1(vector<vector<int> > neighbors, vector<int> cover)
{
vector<int> temp_cover=cover;
int r=0;
while(r!=-1)
{
r= max_removable(neighbors,temp_cover);
if(r!=-1) temp_cover[r]=0;
}
return temp_cover;
}
vector<int> procedure_2(vector<vector<int> > neighbors, vector<int> cover, int k)
{
int count=0;
vector<int> temp_cover=cover;
int i=0;
for(int i=0; i<temp_cover.size(); i++)
{
if(temp_cover[i]==1)
{
int sum=0, index;
for(int j=0; j<neighbors[i].size(); j++)
if(temp_cover[neighbors[i][j]]==0) {index=j; sum++;}
if(sum==1 && cover[neighbors[i][index]]==0)
{
temp_cover[neighbors[i][index]]=1;
temp_cover[i]=0;
temp_cover=procedure_1(neighbors,temp_cover);
count++;
}
if(count>k) break;
}
}
return temp_cover;
}
int cover_size(vector<int> cover)
{
int count=0;
for(int i=0; i<cover.size(); i++)
if(cover[i]==1) count++;
return count;
}
Thank You



