Find the minimum distance from the point 1 1 14 to the parab
Solution
point on paraboloid z=x2+y2 is (x,y,z)
distance from point (1,1,14) to paraboloid is , d=[(x-1)2+(y-1)2+(z-14)2]
distance is minimum if f(x,y,z)=(x-1)2+(y-1)2+(z-14)2 is minimum
we have z=x2+y2
so f(x,y)=(x-1)2+(y-1)2+(x2+y2-14)2
fx =(2(x-1))+0+(2(x2+y2-14)*2x), fy =0+(2(y-1))+(2(x2+y2-14)*2y)
fx =(2(x-1))+(4x(x2+y2-14)), fy =(2(y-1))+(4y(x2+y2-14))
for critical points fx =0, fy =0
(2(x-1))+(4x(x2+y2-14))=0, (2(y-1))+(4y(x2+y2-14))=0
(x-1)+(2x(x2+y2-14))=0, (y-1)+(2y(x2+y2-14))=0
(x2+y2-14)=(1-x)/2x ,(x2+y2-14)=(1-y)/2y
(1-x)/2x =(1-y)/2y
=>x=y
(x-1)+(2x(x2+y2-14))=0
=>(x-1)+(2x(x2+x2-14))=0
=>x-1+4x3-28x =0
=>4x3-27x -1=0
=>x=-2.5794,-0.037045,2.6164
x=y
=>y=-2.5794,-0.037045,2.6164
z=x2+y2
=>z=13.30661, 0.002744664 ,13.6911
at (-2.5794,-2.5794,13.30661) distance d=[(-2.5794-1)2+(-2.5794-1)2+(,13.30661-14)2]=5.10931
at (-0.037045,-0.037045, 0.002744664) distance d=[(-0.037045-1)2+(-0.037045-1)2+(0.002744664-14)2]=14.0739
at (2.6164,2.6164,13.6911) distance d=[(2.6164-1)2+(2.6164-1)2+(13.6911-14)2]=2.30671
minimum distance =2.30671
