Please answer with explanation and clear writting Let W spa

Please answer with explanation and clear writting

Let W = span{(1, 1, 1, 1), (3, 1, 3, 1), (6, 2, 4, 0)}. Find an orthonormal basis of W using the Gram-Schmidt process. (a) {(1/2, 1/2, 1/2, 1/2), {(1/2, -1/2, 1/2, -1/2), {(1/2, 1/2, -1/2, -1/2)} (b) {(1/2, 1/2, 1/2, 1/2), {(0, -1/2, 1, -1/2), {(1/squareroot 6, 0, 1/squareroot 6, -1/squareroot 6)} (c) {(1/2, 1/2, 1/2, 1/2), {(0, 1/squareroot 2, -1/squareroot 2, 0), {(1/squareroot 2, 0, 0, -1/squareroot 2)} (d) {(1/2, 1/2, 1/2, 1/2), {(1/squareroot 2, -1/squareroot 2, 0, 0), {(0, 0, 1/squareroot 2, -1/squareroot 2)} (e) {(1/2, 1/2, 1/2, 1/2), {(-1/squareroot 2, 0, 1/squareroot 2, 0), {(0, 1/squareroot 2, 0, 1/squareroot 2)}

Solution

Let v1 = (1,1,1,1), v 2= (3,1,3,1),and v3 = (6,2,4,0). These vectors are linearly independent as the RREf of the matrix with these vectors as columns is

1

0

0

0

1

0

0

0

1

0

0

0

Now, let u1 = v1 = (1,1,1,1), u2 = v2 –proju1(v2) = v2-[(v2.u1)/(u1.u1)]u1 = v2-[(3+1+3+1)/(1+1+1+1)]u1 = (3,1,3,1)- 2(1,1,1,1)= (3,1,3,1)- (2,2,2,2)= (1,-1,1,-1).

Also, u3 = v3 –proju1(v3) - proju2(v3) = v3 -[(v3.u1)/(u1.u1)]u1-[(v3.u2)/(u2.u2)]u2 = v3 -[(6+2+4+0)/(1+1+1+1)]u1       -[(6-2+4-0)/(1+1+1+1)]u2 = (6,2,4,0) – 3(1,1,1,1)-2(1,-1,1,-1) = (6,2,4,0) –(3,3,3,3)-(2,-2,2,-2) = (1,1,-1,-1)

Then {u1,u2,u3} is an orthogonal basis for W. We have to only convert these into unit vectors. Let w1 = u1/|| u1|| = (1,1,1,1)/(1+1+1+1) = 1/2(1,1,1,1) = (1/2,1/2,1/2,1/2). Also, w2= u2/|| u2|| = 1/2(1,-1,1,-1)= (1/2,-1/2,1/2,-1/2) and w3 = u3/|| u3||= 1/2(1,1,-1,-1) = (1/2,1/2,-1/2,-1/2). Then {w1,w2,w3} is an orthonormal basis for W. Op[tion (a) is the correct answer.

1

0

0

0

1

0

0

0

1

0

0

0

Please answer with explanation and clear writting Let W = span{(1, 1, 1, 1), (3, 1, 3, 1), (6, 2, 4, 0)}. Find an orthonormal basis of W using the Gram-Schmidt

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site