stepr Draw the raps ff x stickers are 000002x dollars campai
Solution
given x<100000, P(x)=0.15-0.000002x ,C(x)=0.095x-0.0000005x2
1)
revenue ,R(x) =(P(x))x
R(x) =(0.15-0.000002x)x
R(x) =(0.15x-0.000002x2)
--------------------------------------------
2)
R\'(x) =(0.15-0.000004x)
R\'\'(x) =0.15-0.000004
for critical points R\'(x)=0
=>(0.15-0.000004x)=0
=>x=37500
R(0)=0
R(37500)=2812.5
R(100000)=-5000
maximum revenue is 2812.5 dollars
maximum number of stickers ordered for maximum revenue =37500
-------------------------------------------------
3)
P(x)0 , x<100000
=>0.15-0.000002x 0
=>0.150.000002x
=>x75000
domain of P(x) is [0,75000]
range of P(x) is [0,0.15]
-----------------------------------------------
4)
let P(x)=y=f(x)=0.15-0.000002x
=>x=f-1(y)
0.15-0.000002x=y
=>0.000002x=0.15-y
=>x=500000(0.15-y)
=>f-1(y)=500000(0.15-y)
inverse of P(x) is =500000(0.15-y)
---------------------------------------------
5)
f-1 represents the number of tickets ordered given the price per ticket
------------------------------------------------------
6)
domain of f is [0,75000]
range of f is [0,0.15]
------------------------------------------------------
7)
domain of f-1 is [0,0.15]
range of f-1 is [0,75000]
------------------------------------------------------
8)
f-1(0.10)=500000(0.15-0.10)
f-1(0.10)=25000
25000 tickets are ordered when price per ticket is 0.10dollars

