Find the Inverse of the following functions f X 3 X 7 fX

Find the Inverse of the following functions: f (X) = 3 X - 7 f(X) = f(X) = f(X) = f(X) Y is directly proportional to X (or Y varies as X). If X = 5 then Y = 12. Determine the Constant of proportionality k. When X = 10 find the Value of Y. Y is directly proportional to X and inversely proportional to t. X = - 2and t = 4 then Y = 7. Find the Constant of proportionality k. Find all values of X such that f(X) >0 and find all values of X such that f(X)

Solution

5)

let f(x)=y

=>x=f-1(y)

now

i)

f(x)=3x -7

3x-7=y

=>x=(y+7)/3

=>f-1(y)=(y+7)/3

=>f-1(x)=(x+7)/3

------------------------------------------

ii)

f(x)=2/(x+1)

2/(x+1)=y

=>x+1=2/y

=>x=(2-y)/y

=>f-1(y)=(2-y)/y

=>f-1(x)=(2-x)/x

---------------------------------

iii)

f(x)=3x/(x-2)

3x/(x-2)=y

=>(x-2)/3x=1/y

=>(1/3)-(2/3x)=1/y

=>(1/3)-(1/y)=(2/3x)

=>(2/3x)=((y-3)/3y)

=>(1/x)=((y-3)/2y)

=>x=2y/(y-3)

=>f-1(y)=2y/(y-3)

=>f-1(x)=2x/(x-3)

---------------------------------

iv)

f(x)=x3 -6

x3 -6=y

=>x3=(y+6)

=>x=(y+6)1/3

=>f-1(y)=(y+6)1/3

=>f-1(x)=(x+6)1/3

------------------------------------------

v)

f(x)=-x3 +2

-x3+2=y

=>x3=(2-y)

=>x=(2-y)1/3

=>f-1(y)=(2-y)1/3

=>f-1(x)=(2-x)1/3

------------------------------------------

 Find the Inverse of the following functions: f (X) = 3 X - 7 f(X) = f(X) = f(X) = f(X) Y is directly proportional to X (or Y varies as X). If X = 5 then Y = 12
 Find the Inverse of the following functions: f (X) = 3 X - 7 f(X) = f(X) = f(X) = f(X) Y is directly proportional to X (or Y varies as X). If X = 5 then Y = 12

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site