general solution of the given second order differential equa
general solution of the given second order differential equation y\'\'+10y\'+25y=0
Solution
For such linear homogeneous differential equations we assume solutions of the form:
y=e^{kx}
Substituting gives:
k^2+10k+25=0
(k+5)^2=0
k=-5
So it is a repeated root.
For k=-5 one solution is:e^{-5x}
For twice repeated root another solution is: xe^{-5x}
For thrice repeated root eg. (k-1)^3=0
x^2e^{-5x} would be another solution.
It is is easy to check:y2=xe^{-5x} is a solution
y2\'=e^{-5x}-5xe^{-5x}
y2\'\'=-10e^{-5x}+25xe^{-5x}
y2\'\'+10y\'+25=-10e^{-5x}+25xe^{-5x}+10(e^{-5x}-5xe^{-5x})+25xe^{-5x}=0
So general solution is:
y(x)=Ae^{5x}+Bxe^{5x}
