Let Y Vrightarrow 1 Vrightarrow 2 subset R3 where Vrightarr
Let Y = {V^rightarrow _1, V^rightarrow _2} subset |R^3, where V^rightarrow _1 = emacr _1 + emacr _2, and V^rightarrow _2 = emacr _2 + emacr _3. Show that Y is linearly independent Find a vector V^rightarrow _3 which is not in the sapn of y Let z = {V_1, V_2, V_3}. I z a basis for |R^3?
Solution
a)Let a,b so that
av1+bv2=0
a(e1+e2)+b(e2+e3)=0
ae1+(a+b)e2+be3=0
HEnce, a=b=0
So the vectors are linearly independent
b)
Let, v3=e1
Let, a,b so that
v3=e1=a(e1+e2)+b(e2+e3)=ae1+(a+b)e2+be3
So, a=1,b=0
a+b=0
Hence no solution
SO, v3=e1 is not in span
c)
Yes.
R3 has dimension 3 so any set of 3 linearly independent vectors is a basis for R3
