Let W x y z w R4 x y z 2 0 Find out an orthonormal basi

Let W = {(x y z w) R^4: x + y + z + 2 = 0}. Find out an orthonormal basic for W.

Solution

Let y = r and z = s, and w = t. Then x = -2-y-z = -2-r-s so that (x,y,z,w)T = ( -2-r-s, r, s, t )T = (-2,0,0,0)T + r (-1,1,0,0)T + s (-1,0,1,0)T+ t (0,0,0,1)T. Thus a basis for W is { (-2,0,0,0)T,(-1,1,0,0)T, (-1,0,1,0)T,(0,0,0,1)T} = {v1, v2 ,v3 , v4 } (say).

Let u1 = v1 = (-2,0,0,0)T. Also, let u2 = v1 –Proju1 (v2) = v2 –[(v2.u1)/(u1.u1)]u1= v2 –(1/2)u1 = (-1,1,0,0)T -     (-1,0,0,0)T = ( 0,1,0,0)T.

u3= v3 –Proju1 (v3 )–Proju2(v3) =v3–[(v3.u1)/(u1.u1)]u1 -[(v3.u2)/(u2.u2)]u2 = v3–1/2u1 =(-1,0,1,0)T-( -1,0,0,0)T = (0,0,1,0)T

u4 = v4 –Proju1 (v4) - Proju2 (v4)- Proju3 (v4) = v4 –[(v4.u1)/(u1.u1)]u1 –[(v4.u2)/(u2.u2)]u2–[(v4.u3)/(u3.u3)]u3 =

(0,0,0,1)T

Then { u1, u2, u3, u4} is an orthogonal basis for W. On normalizing u1, the set {(1,0,0,0)T,(0,1,0,0)T,(0,0,1,0)T, (0,0,0,1)T} is an orthonotmal basis for W.

 Let W = {(x y z w) R^4: x + y + z + 2 = 0}. Find out an orthonormal basic for W.SolutionLet y = r and z = s, and w = t. Then x = -2-y-z = -2-r-s so that (x,y,z

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site