Let fx x3 4x Determine on which intervals fx greaterthanor
Let f(x) = x^3 - 4x. Determine on which intervals f(x) greaterthanorequalto 0. Let g(x) = 2x - 3. Evaluate (f compositefunction g) (1) and (g compositefunction f) (0). Evaluate f(x + h) - f(x)/h. Simplify as much as possible (which should result in the elimination of h from the denominator).
Solution
f(x) = x^3 -4x
a) f(x) >=0
x^3 -4x >0 =0 ; x(x^2 -4) >=0
x(x+2)(x-2) >=0
-2<=x<= 0 or x >=2
[ -2, 0] U [ 2, inf )
b) g(x) = 2x -3 ;
(f o g)(x) = (2x-3)^3 -4(2x -3)
(f o g)(1) = (2-3)^3 - 4(2-3) = -1 +4 = 3
(g o f)(x) = 2(x^3 - 4x) -3
(g o f)(1) = 2( 1- 4) -3 = -9
c) f(x+h) - f(x) = ( x+h)^3 - 4(x+h) - x^3 + 4x
= (x +h -x)( x^2 +h^2 +2hx + x^2 +hx +x^2) -4h
= h( 2x^2 + 3hx +x^2) -4h
[f(x+h) -f(x)]/h = 2x^2 + 3hx +x^2 -4
