The following data set lists 50 magnitudes Richter scale of
The following data set lists 50 magnitudes (Richter scale) of 50 earthquakes, and those earthquakes have magnitudes with a standard deviation of
0.587. 0.70 2.20 1.64 1.01 1.62 1.28 0.92 1.00 1.49 1.42 0.74 1.98 1.32 1.26 1.83 0.83 1.00 2.24 0.84 1.35 0.64 0.64 2.95 0.00 0.99 1.34 0.79 2.50 1.42 0.93 0.39 1.22 0.90 0.65 1.56 0.54 0.79 1.79 1.00 0.40 0.70 0.20 1.76 1.46 0.40 1.25 1.44 1.25 1.25 1.39
Convert the magnitude of the strongest earthquake to a score.
Solution
Getting the mean, X,          
           
 X = Sum(x) / n          
 Summing the items, Sum(x) =    59.797      
 As n =    51      
 Thus,          
 X =    1.172490196      
           
 Setting up tables,          
 x   x - X   (x - X)^2  
 0.587   -0.585490196   0.34279877  
 0.7   -0.472490196   0.223246985  
 2.2   1.027509804   1.055776397  
 1.64   0.467509804   0.218565417  
 1.01   -0.162490196   0.026403064  
 1.62   0.447509804   0.200265025  
 1.28   0.107509804   0.011558358  
 0.92   -0.252490196   0.063751299  
 1   -0.172490196   0.029752868  
 1.49   0.317509804   0.100812476  
 1.42   0.247509804   0.061261103  
 0.74   -0.432490196   0.18704777  
 1.98   0.807509804   0.652072083  
 1.32   0.147509804   0.021759142  
 1.26   0.087509804   0.007657966  
 1.83   0.657509804   0.432319142  
 0.83   -0.342490196   0.117299534  
 1   -0.172490196   0.029752868  
 2.24   1.067509804   1.139577181  
 0.84   -0.332490196   0.11054973  
 1.35   0.177509804   0.03150973  
 0.64   -0.532490196   0.283545809  
 0.64   -0.532490196   0.283545809  
 2.95   1.777509804   3.159541103  
 0   -1.172490196   1.37473326  
 0.99   -0.182490196   0.033302672  
 1.34   0.167509804   0.028059534  
 0.79   -0.382490196   0.14629875  
 2.5   1.327509804   1.76228228  
 1.42   0.247509804   0.061261103  
 0.93   -0.242490196   0.058801495  
 0.39   -0.782490196   0.612290907  
 1.22   0.047509804   0.002257181  
 0.9   -0.272490196   0.074250907  
 0.65   -0.522490196   0.272996005  
 1.56   0.387509804   0.150163848  
 0.54   -0.632490196   0.400043848  
 0.79   -0.382490196   0.14629875  
 1.79   0.617509804   0.381318358  
 1   -0.172490196   0.029752868  
 0.4   -0.772490196   0.596741103  
 0.7   -0.472490196   0.223246985  
 0.2   -0.972490196   0.945737181  
 1.76   0.587509804   0.34516777  
 1.46   0.287509804   0.082661887  
 0.4   -0.772490196   0.596741103  
 1.25   0.077509804   0.00600777  
 1.44   0.267509804   0.071561495  
 1.25   0.077509804   0.00600777  
 1.25   0.077509804   0.00600777  
 1.39   0.217509804   0.047310515  
           
 Thus, Sum(x - X)^2 =    17.25167275      
           
 Thus, as           
           
 s^2 = Sum(x - X)^2 / (n - 1)          
           
 As n =    51      
           
 s^2 =    0.345033455      
           
 Thus,          
           
 s =    0.587395484      
Thus, as the highest score is x = 2.95, then
z = (x - X)/s = (2.95 - 1.172490196)/0.587395484
z = 3.026086942 [ANSWER]


