The following data set lists 50 magnitudes Richter scale of
The following data set lists 50 magnitudes (Richter scale) of 50 earthquakes, and those earthquakes have magnitudes with a standard deviation of
0.587. 0.70 2.20 1.64 1.01 1.62 1.28 0.92 1.00 1.49 1.42 0.74 1.98 1.32 1.26 1.83 0.83 1.00 2.24 0.84 1.35 0.64 0.64 2.95 0.00 0.99 1.34 0.79 2.50 1.42 0.93 0.39 1.22 0.90 0.65 1.56 0.54 0.79 1.79 1.00 0.40 0.70 0.20 1.76 1.46 0.40 1.25 1.44 1.25 1.25 1.39
Convert the magnitude of the strongest earthquake to a score.
Solution
Getting the mean, X,
X = Sum(x) / n
Summing the items, Sum(x) = 59.797
As n = 51
Thus,
X = 1.172490196
Setting up tables,
x x - X (x - X)^2
0.587 -0.585490196 0.34279877
0.7 -0.472490196 0.223246985
2.2 1.027509804 1.055776397
1.64 0.467509804 0.218565417
1.01 -0.162490196 0.026403064
1.62 0.447509804 0.200265025
1.28 0.107509804 0.011558358
0.92 -0.252490196 0.063751299
1 -0.172490196 0.029752868
1.49 0.317509804 0.100812476
1.42 0.247509804 0.061261103
0.74 -0.432490196 0.18704777
1.98 0.807509804 0.652072083
1.32 0.147509804 0.021759142
1.26 0.087509804 0.007657966
1.83 0.657509804 0.432319142
0.83 -0.342490196 0.117299534
1 -0.172490196 0.029752868
2.24 1.067509804 1.139577181
0.84 -0.332490196 0.11054973
1.35 0.177509804 0.03150973
0.64 -0.532490196 0.283545809
0.64 -0.532490196 0.283545809
2.95 1.777509804 3.159541103
0 -1.172490196 1.37473326
0.99 -0.182490196 0.033302672
1.34 0.167509804 0.028059534
0.79 -0.382490196 0.14629875
2.5 1.327509804 1.76228228
1.42 0.247509804 0.061261103
0.93 -0.242490196 0.058801495
0.39 -0.782490196 0.612290907
1.22 0.047509804 0.002257181
0.9 -0.272490196 0.074250907
0.65 -0.522490196 0.272996005
1.56 0.387509804 0.150163848
0.54 -0.632490196 0.400043848
0.79 -0.382490196 0.14629875
1.79 0.617509804 0.381318358
1 -0.172490196 0.029752868
0.4 -0.772490196 0.596741103
0.7 -0.472490196 0.223246985
0.2 -0.972490196 0.945737181
1.76 0.587509804 0.34516777
1.46 0.287509804 0.082661887
0.4 -0.772490196 0.596741103
1.25 0.077509804 0.00600777
1.44 0.267509804 0.071561495
1.25 0.077509804 0.00600777
1.25 0.077509804 0.00600777
1.39 0.217509804 0.047310515
Thus, Sum(x - X)^2 = 17.25167275
Thus, as
s^2 = Sum(x - X)^2 / (n - 1)
As n = 51
s^2 = 0.345033455
Thus,
s = 0.587395484
Thus, as the highest score is x = 2.95, then
z = (x - X)/s = (2.95 - 1.172490196)/0.587395484
z = 3.026086942 [ANSWER]

