Assume that W Span v1 v2 v3 where v1 1 1 0 0 v2 1 1 1 1 a
Solution
(a). The vectors v1,v2,v3 are apparently linearly independent so that the set { v1,v2,v3} is a basis for W.
Let u1 = v1 = (1,1,0,0)T, u2 = v2-proju1(v2) = v2 –[(v2.u1)/(u1.u1)]u1 = v2 –[(1+1+0+0)/((1+1+0+0)]u1 = v2 –u1 = (1,1,1,1)T- (1,1,0,0)T = (0,0,1,1)T and u3 = v3-proju1(v3)-proju2(v3)= v3–[(v3.u1)/(u1.u1)]u1-[(v3.u2)/(u2.u2)]u2 = v3–[((0+1+0+0)/(1+1+0+0)]u1-[(0+0+0+1)/(0+0+1+1)]u2 = (0,1,0,1)T-(1/2)(1,1,0,0)T-(1/2)(0,0,1,1)T = (-1/2, 1/2, -1/2,1/2)T.Then { u1,u2,u3} is an orthogonal basis for W.
(b). W#e have projv1(y)= [(y.v1)/(v1.v1)]v1 = [(1+2+0+0)/(1+1+0+0)]v1= (3/2)(1,1,0,0)T= (3/2,3/2,0,0)T, projv2(y)= [(y.v2)/(v2.v2)]v2 = [(1+2+3+4)/(1+1+1+1)]v2= 5/2(1,1,1,1)T= (5/2,5/2,5/2,5/2)T, and projv3(y)= [(y.v3)/(v3.v3)]v3= [(0+2+0+4)/(0+1+0+1)]v3 = 3(0,1,0,1)T = (0,3,0,3)T. Hence projW(y) = (3/2,3/2,0,0)T+(5/2,5/2,5/2,5/2)T+(0,3,0,3)T= (4,7,5/2,11/2)T.
![Assume that W = Span {v_1, v_2, v_3}, where v_1 = [1 1 0 0], v_2 = [1 1 1 1], and v_3 = [0 1 0 1]. (a) Find an orthogonal basis for W. (b) Find the projection Assume that W = Span {v_1, v_2, v_3}, where v_1 = [1 1 0 0], v_2 = [1 1 1 1], and v_3 = [0 1 0 1]. (a) Find an orthogonal basis for W. (b) Find the projection](/WebImages/37/assume-that-w-span-v1-v2-v3-where-v1-1-1-0-0-v2-1-1-1-1-a-1110232-1761588529-0.webp)