Let u equal v equal and let W be the subspace Let urightarro
Let u equal, v equal, and let W be the subspace
Let u^rightarrow = [1 9 0 3], v^rightarrow = [0 0 1 3], and let W the subspace of ropf^4 spanned by {u^rightarrow, v^rightarrow}. Find a basis for W^1.Solution
Let w=(p,q,r,s)T be an arbitrary element of W. Then u.w = 0 or, p+9q +3s =0 so that p = -9q-3s. Also, v.w = 0 so that r+3s = 0 or, r = -3s. Then w =(p,q,r,s)T = ( -9q-3s, q,-3s,s)T = q(-9,1,0,0)T +s(-3,0,-3,1)T. Then a basis for W is {(-9,1,0,0)T , (-3,0,-3,1)T }.
![Let u equal, v equal, and let W be the subspace Let u^rightarrow = [1 9 0 3], v^rightarrow = [0 0 1 3], and let W the subspace of ropf^4 spanned by {u^rightarro Let u equal, v equal, and let W be the subspace Let u^rightarrow = [1 9 0 3], v^rightarrow = [0 0 1 3], and let W the subspace of ropf^4 spanned by {u^rightarro](/WebImages/37/let-u-equal-v-equal-and-let-w-be-the-subspace-let-urightarro-1110654-1761588826-0.webp)