Please help me solve it use the defndferentiabilty at a poin
Solution
note : only one question allowesd per submission
1.
 Using the definition of the derivative,
lim [ cos(x + h) - cos(x) ] / h
 h -> 0
lim [ cos(x)cos(h) - sin(x)sin(h) - cos(x) ] / h triigonometric formula
 h -> 0
lim [ cos(x)cos(h) - cos(x) - sin(x)sin(h) ] / h rearranging
 h -> 0
lim [ cos(x) [ cos(h) - 1 ] - sin(x)sin(h) ] / h factoring
 h -> 0
lim [ cos(x) [ cos(h) - 1 ]/h - [sin(x)sin(h)]/h rearranging and writing seperately
 h -> 0
lim [ cos(x) [cos(h) - 1]/h ] - lim sin(x)sin(h)/h
 h -> 0 . . . . . . . . . . . . . . . . . . h -> 0
Factor cos(x) from the first limit, and sin(x) from the second limit.
cos(x) lim [ cos(h) - 1 ]/h - sin(x) lim sin(h)/h
 . . . . . . h -> 0 . . . . . . . . . . . . . . . . . h -> 0
 lim [ cos(h) - 1 ]/h = 0, and
 h -> 0
 lim sin(h)/h = 1
 h -> 0
The above then becomes
cos(x) (0) - sin(x)(1)
 0 - sin(x)
-sin(x)

