Let zsqrt3i w22i 1 Convert z and w to polar form 2 Calculate
Let z=sqrt3-i w=-2-2i
1) Convert z and w to polar form
2) Calculate wz using De Moivre\'s theorem
3) Calculate z^2. Express your answer in rectangular (a+bi) form
4) Calculate w^4. Express your answer in polar (r(cos theta+i sin theta) form.
Solution
z = sqrt 3 - i
a = sqrt 3 , b = -1
r^2 = a^2 + b^2
r^2 = 3 + 1
r = 2
cos theta = a/r = sqrt 3 / 2
sin theta = b/r = -1 /2
therefore, polar form is
r ( cos theta + i sin theta )
z = 2 ( cos (-30) + i sin (-30) )
w = 2 - 2i
r^2 = 2^2 + 2^2
r = sqrt 8
theta = tan^-1 ( -2/-2)
theta = 45 degrees
polar form is
sqrt 8 ( cos 45 + i sin 45 )
2) wz = sqrt 8 ( cos 45 + i sin 45 )* 2 ( cos (-30) + i sin (-30) )
= 4 sqrt 2 e^( 45 - 30)i
= 4 sqrt 2 e^i15
3) z^2 = ( sqrt 3 - i )^2
r = 2
theta = -30 =-pi/6
z^2 = (2)^2 [ cos 2*(-pi/6) + i sin 2*(-pi/6)]
z^2 = 4 [ cos (-pi/3) + i sin (-pi/3) ]
z^2 = 4 [ 0.5 - i sqrt 3/2 ]
= 2 - 2i sqrt 3
4) w^4 = ( -2 - 2i)^4
w^4 = ( sqrt 8)^4 [ cos 4*(pi/4) + i sin (4*pi/4) ]
w^4 = 64 [ cos pi + i sin pi ]

