Consider a cube C 0 2 times 1 3 times 0 2 that is C consist
Solution
given that cube C=[0,2] * [1,3]* [0,2]
and given 0 <= x <=2
1 <= y <=3
0 <= z <=2
Given that
||(2xze1+ex+ye2+z3e3) .dS
=|| (2xz+ex+y+z3) .(e1,e2,e3) .dS
by guass diverdenge therum we can write
|||divf dv =|| F.N dS here | is intigration symbal
||| div f dv = ||f(e1,e2,e3) ds
we have F = 2xzi+ex+yj+z3k
div F= d/dx (2xz) +d/dy(ex+y) +d/dz(z3) here d/dx, d/dy, d/dz are partial derivatives
div F= 2z+ex+y+3z2
||| div F dv =||| (2z+ex+y+3z2) dv
=||| (2z+ex+y+3z2) dz dy dx for dv=dxdydz x in [0,2] y in [1,3] , z in [0,2]
=||(2z2/2 +ex+y z +3 z3/3)dy dx
=||(z2+ex+yz +z3) dydx
=||(4+2ex+y+8)dydx after substituting z limits [0,2]
=| (4y +2ex+y+8y)dx
=|(4(3-1)+2ex+(3-1)+8(3-1)) dx after sub stituting y limits [1,3]
=| (8+2ex+2+16)dx
=(8x+2ex+2+16x)
=(8(2-0)+2e(2-0)+2+16(2-0)) after substituting x limits
=16+2e4+32
=48+2e4
![Consider a cube C = [0, 2] times [1, 3] times [0, 2], that is, C consists of all points (x, y, z) R^3 such that 0 lessthanorequalto x lessthanorequalto 2, 1 le Consider a cube C = [0, 2] times [1, 3] times [0, 2], that is, C consists of all points (x, y, z) R^3 such that 0 lessthanorequalto x lessthanorequalto 2, 1 le](/WebImages/37/consider-a-cube-c-0-2-times-1-3-times-0-2-that-is-c-consist-1110825-1761588945-0.webp)