Consider a cube C 0 2 times 1 3 times 0 2 that is C consist

Consider a cube C = [0, 2] times [1, 3] times [0, 2], that is, C consists of all points (x, y, z) R^3 such that 0 lessthanorequalto x lessthanorequalto 2, 1 lessthanorequalto y lessthanorequalto 3, and 0 lessthanorequalto z lessthanorequalto 2. Orient the boundary partial differential C with outward normals and evaluate a surface integral doubleintegral_partial differential C(2xze_1 + e^x+y e_2 + z^3 e_3) middot dS (e_1, e_2, e_3 is the standard basis for R^3).

Solution

given that cube C=[0,2] * [1,3]* [0,2]

and given 0 <= x <=2

1 <= y <=3

0 <= z <=2

Given that

||(2xze1+ex+ye2+z3e3) .dS

=|| (2xz+ex+y+z3) .(e1,e2,e3) .dS

by guass diverdenge therum we can write

|||divf dv =|| F.N dS here | is intigration symbal

||| div f dv = ||f(e1,e2,e3) ds

we have F = 2xzi+ex+yj+z3k

div F= d/dx (2xz) +d/dy(ex+y) +d/dz(z3) here d/dx, d/dy, d/dz are partial derivatives

div F= 2z+ex+y+3z2

||| div F dv =||| (2z+ex+y+3z2) dv

   =||| (2z+ex+y+3z2) dz dy dx for dv=dxdydz x in [0,2] y in [1,3] , z in [0,2]

   =||(2z2/2 +ex+y z +3 z3/3)dy dx

   =||(z2+ex+yz +z3) dydx

   =||(4+2ex+y+8)dydx after substituting z limits [0,2]

   =| (4y +2ex+y+8y)dx

   =|(4(3-1)+2ex+(3-1)+8(3-1)) dx after sub stituting y limits [1,3]

   =| (8+2ex+2+16)dx

=(8x+2ex+2+16x)

   =(8(2-0)+2e(2-0)+2+16(2-0)) after substituting x limits

   =16+2e4+32

=48+2e4

 Consider a cube C = [0, 2] times [1, 3] times [0, 2], that is, C consists of all points (x, y, z) R^3 such that 0 lessthanorequalto x lessthanorequalto 2, 1 le

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site