Find the value of b for which ye2xy x bxe2xy y 0 is exact
Find the value of b for which (ye^2xy + x) + bxe^2xy y\' = 0 is exact, and then find a solution using the determined value for b.
Solution
Equation is of the form
Mdx+Ndy=0
M=y exp(2xy)
N=b x exp(2xy)
For exact ness we need
M_y=N_x
M_y=2xy exp(2xy)+exp(2xy)
N_x=b exp(2xy)+2bxy exp(2xy)
So for equation to be exact
b=1
So integral is
F(x,y)=C
So that
dF=Mdx+Ndy=0
F_x=M=y exp(2xy)+x
Integrating w.r.t. x treating y as a parameter.
F= exp(2xy)/2+x^2/2+g(y)
So,
F_y=x exp(2xy)+g\'=N
F_y=N=x exp(2xy)
Hence, g\'=0 is g is constant so
F= exp(2xy)/2+x^2/2=C
