Find all the roots of fx 2x3 x2 12x 9 given 3 as a root
Find all the roots of f(x) = 2x^3 - x^2 - 12x - 9 given 3 as a root. Write the function in factored form.
Solution
given 3 is a root
=>(x-3) is a factor of f(x)
long division:
x-3......]....2x3-x2-12x-9....[...2x2+5x+3
................2x3-6x2...................
.....................5x2-12x..............
.....................5x2-15x..............
............................3x-9............
............................3x-9............
...............................0..............
so f(x)=(x-3)(2x2+5x+3)
for roots f(x)=0
(x-3)(2x2+5x+3) =0
=>(2x2+5x+3)=0
=>2x2+5x= -3
=>x2+(5/2)x=-(3/2)
=>x2+(5/2)x+(5/4)2=-(3/2)+(5/4)2
=>(x+(5/4))2=-(3/2)+(25/16)
=>(x+(5/4))2=(1/16)
=>(x+(5/4))=-(1/4) ,(x+(5/4))=(1/4)
=>x=-(5/4)-(1/4) ,x=-(5/4)+(1/4)
=>x=(-3/2) ,x=-1
roots of f(x) are x=(-3/2),-1,3
=>2x+3 , x+1 ,x-3 are factors of f(x)
so f(x)=2x3-x2-12x-9 =(2x+3)(x+1)(x-3)
