Another model for a growth function for a limited population
Solution
dP/dt = c ln(K/P)P
 Rewrite the equation, using separation
 dP/(ln(K/P)P) = cdt
 
 dP/( (ln K - ln P)P ) = cdt
 Here, ( ln a/b = ln a - ln b)
 put (lnK - lnP) = z
 => -(1/P)dP = dz
 
 dP/( (ln K - ln P)P ) = cdt
 => -(1/z)dz = cdt
 integrating both sides
 
 => z = de^-ct ( d is some constant )
Back substitution z = lnK - lnP
 => lnK - lnP = de^-ct
 
putting t = 0
 => lnK - lnPo = d
 => d = ln(K/Po)
 
 
 so,
 lnK - lnP = ln(K/Po)e^-ct
 
 lnP = lnK - ln(K/Po)e^-ct
 
 P = e^(lnK - ln(K/Po)e^-ct)
 P = e^lnK*{e^-ln(K/Po)}^e^-ct
 P = K*(Po/K)^(e^-ct)
 
 c =0.2, K= 3000, Po =400
 a) P(t) = 3000*(400/3000)^(e^-0.2t)
= 3000*(0.133)^(e^-0.2t)
 
 b) lim t->inf P(t) = 3000*(0.133)^(0) = 3000
 
 c) dP/dt = c ln(K/P)P
 
 d^2P/dt^2 = c ln(K/P) + c (P/K)(-K/P^2)P
 d^2P/dt^2 = c ln(K/P) - c
 
 for max rate,
 d^2P/dt^2 = 0
 c ln(K/P) - c = 0
 ln(K/P) = 1
 K/P = e
 => P = K/e = 3000/2.71828
 => P = 1103.639   
= 1104 (approx)


