A machine produces parts with lengths that are normally dist
A machine produces parts with lengths that are normally distributed with = 0.53. A sample of 18 parts has a mean length of 76.61.
(a) Give a point estimate for . (Give your answer correct to two decimal places.)
 
 
 (b) Find the 90% confidence maximum error of estimate for . (Give your answer correct to three decimal places.)
 
 
 (c) Find the 90% confidence interval for . (Give your answer correct to three decimal places.)
| Lower Limit | |
| Upper Limit | 
Solution
a)
It is the sample mean,
X = 76.61 [ANSWER]
***************
b)
Note that              
 Margin of Error E = z(alpha/2) * s / sqrt(n)              
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.05          
 X = sample mean =    76.61          
 z(alpha/2) = critical z for the confidence interval =    1.644853627          
 s = sample standard deviation =    0.53          
 n = sample size =    18          
               
 Thus,              
 Margin of Error E =    0.205   [ANSWER]      
****************
C)
Also,
Lower bound =    76.405          
 Upper bound =    76.815 [ANSWER]
               

