Find the exact value of cosu v given that sin u 35 with u
Find the exact value of cos(u + v) given that sin u = -3/5, with u in quadrant III, and sin v = 12/13, with v in the quadrant II. cos (u + v) = (Simplify your answer. Type an integer or a simplified fraction.)
Solution
sin u = -3/5
cos u = - 4/5
sin v = 12/13
cos v = - 5/13
cos ( u + v) = cos u cos v - sin u sin v
plugging the values
cos ( u + v ) = ( -4/5)(-5/13) - ( -3/5 )(12/13)
= 20/65 + 36/65
= 56/65
cos ( u + v) = 56 / 65
