Completing the square x2 5x 10 0Solutionx2 5x 6 0 this
     Completing the square x^2 - 5x + 10 = 0![Completing the square x^2 - 5x + 10 = 0Solutionx2 - 5x + 6 = 0 this can be rewritten as: x2 - 2x - 3x + 6 = 0 => x[x - 2] - 3[x - 2] = 0 => [x - 2][x - 3  Completing the square x^2 - 5x + 10 = 0Solutionx2 - 5x + 6 = 0 this can be rewritten as: x2 - 2x - 3x + 6 = 0 => x[x - 2] - 3[x - 2] = 0 => [x - 2][x - 3](/WebImages/37/completing-the-square-x2-5x-10-0solutionx2-5x-6-0-this-1111305-1761589311-0.webp) 
  
  Solution
x2 - 5x + 6 = 0
this can be rewritten as:
x2 - 2x - 3x + 6 = 0
=> x[x - 2] - 3[x - 2] = 0
=> [x - 2][x - 3] = 0
therefore, x = 2 and x = 3
so, the roots of the quadratic equation x2 - 5x + 6 = 0 are x = 2 and x = 3.
![Completing the square x^2 - 5x + 10 = 0Solutionx2 - 5x + 6 = 0 this can be rewritten as: x2 - 2x - 3x + 6 = 0 => x[x - 2] - 3[x - 2] = 0 => [x - 2][x - 3  Completing the square x^2 - 5x + 10 = 0Solutionx2 - 5x + 6 = 0 this can be rewritten as: x2 - 2x - 3x + 6 = 0 => x[x - 2] - 3[x - 2] = 0 => [x - 2][x - 3](/WebImages/37/completing-the-square-x2-5x-10-0solutionx2-5x-6-0-this-1111305-1761589311-0.webp)
