Find the orthogonal projection of upsilon 12 5 25 11 onto t
Find the orthogonal projection of upsilon = [12 -5 25 -11] onto the subspace W spanned by {[3 0 5 -4], [-5 3 3 1]} proj_W (upsilon) = []
Solution
Span(v, w)
v1 = v = (3, 0 , 5, -4)
v2 = w - ((w.v)/v.v)v = (-5, 3 , 3, 1) - ((-4/50))(3, 0 , 5, -4)
=( -5, 3 , 3, 1) - (-12/50 , 0 , -4/10 , 16/50 ) = (-238/12 , 3 , -26/10 , -34/50) = (-119/6 ,3, -13/5 , -17/25)
projw(u) = [(u.v1)/v1.v1)]v1 + ((u.v2)/v2.v2)v2
= 205/40(3, 0 , 5, -4) +
[(12, -5,25,11)(-119/6 ,3, -13/5 , -17/25)/(-119/6 ,3, -13/5 , -17/25).(-119/6 ,3, -13/5 , -17/25)](-119/6 ,3, -13/5 , -17/25)
![Find the orthogonal projection of upsilon = [12 -5 25 -11] onto the subspace W spanned by {[3 0 5 -4], [-5 3 3 1]} proj_W (upsilon) = []SolutionSpan(v, w) v1 = Find the orthogonal projection of upsilon = [12 -5 25 -11] onto the subspace W spanned by {[3 0 5 -4], [-5 3 3 1]} proj_W (upsilon) = []SolutionSpan(v, w) v1 =](/WebImages/37/find-the-orthogonal-projection-of-upsilon-12-5-25-11-onto-t-1111518-1761589478-0.webp)